412. Infrared Absorption of Heteroaromatic and Benzenoid Six-

 membered Monocyclic Nuclei. Part VI. ${ }^{1}$ Pyridine-Boron Complexes.
Abstract

By A. R. Katritzky. The infrared spectra of the pyridine and trimethyl amine adducts of boron tri-hydride and -halides and of some substituted pyridine-boron trichloride adducts are recorded and discussed.

Following work ${ }^{1}$ on the characteristic ring vibrations of monosubstituted benzenes, pyridines, and pyridine 1 -oxides, we have now investigated the spectra of pyridines coordinated with boron compounds (in these adducts a spare pair of electrons is not available for back-co-ordination into the pyridine ring; contrast pyridine 1 -oxide). To facilitate assignment of the BX_{3} vibrations, the spectra of trimethylamine-boron tri-hydride and -halide adducts were also determined. $0 \cdot 2 \mathrm{~m}$-Chloroform solutions were examined in a $0 \cdot 117-\mathrm{mm}$. cell. ${ }^{2}$ Conductivity and molecular-weight measurements showed that pyridineboron trichloride is monomeric under the conditions of measurement. ${ }^{3}$ All the bands $\left(\varepsilon_{\mathrm{A}} \geqslant 15\right)$ were characteristic of the pyridine ring co-ordinately linked to boron (Tables 1 and 4), the BX_{3} group (Table 3), the NMe_{3} group (Table 2), or the substituent (e.g., the ester bands ${ }^{2 b}$), and tentative assignments were made as indicated in the Tables.

Trimethylamine Adducts and Boron Hydride and Halide Modes (Tables 2 and 3).-In unpublished work, ${ }^{4}$ Peterson and Bauer tentatively assigned the bands in the infrared spectra (Nujol and halogenocarbon mulls and potassium bromide disks) of trimethyl-amine-boron tri-hydride, -fluoride, and -chloride using a normal co-ordinate analysis of the chloro-compound. This work, which came to our notice late, considerably assisted the assignments given in Tables 2 and 3. These are as in the previous work ${ }^{4}$ except that the $1001 \mathrm{~cm} . .^{-1}$ band in trimethylamine-borine is assigned to the asymmetric $\mathrm{C}-\mathrm{N}$ stretching mode instead of a BH bending mode because this band is absent in pyridine-borine. The frequencies agree well, considering the difference in states, with the above and other work, e.g., the $\mathrm{B}^{-} \mathrm{H}$ stretching frequencies in borine carbonyl occur ${ }^{5}$ at 2434 and $2380 \mathrm{~cm} .^{-1}$, and in gaseous trimethylamine-borine ${ }^{6}$ the $\mathrm{B}-\mathrm{H}$ stretching frequency occurs at $2390 \mathrm{~cm} .^{-1}$ and the BH_{3} bending frequency at $1178-1169 \mathrm{~cm} .^{-1}$.

Pyridine Adducts (Table 1).-As expected, changes in the ligand have relatively little effect on the ring vibrations. The ring-stretching frequencies (cols. 2-5) have been discussed. ${ }^{1}$ The frequencies given in cols. 6, 8, and 9 are assigned to CH in-plane deformation modes corresponding to those in monosubstituted benzenes at $c a .1155,1073$, and $1028 \mathrm{~cm} .{ }^{-1}$, respectively. ${ }^{2 a}$ The $\mathrm{B}-\mathrm{N}$ stretching frequency is considerably shifted from its position for the trimethylamine complexes but is remarkably insensitive to changes in the boron compound.

4-Substituted Pyridine-Boron Trichlorides (Table 4).-In the $1600-1400 \mathrm{~cm}^{-1}$ region the four usual ring stretching frequencies are shown (cols. 1-4). The first band occurs near $1640 \mathrm{~cm} .^{-1}$ but is lower for the chloro-compound (cf. other series ${ }^{1}$); the intensity decreases as the substituent becomes more electron-attracting. The intensity of the second band, at $1570-1555[1564 \pm 5] \mathrm{cm} .^{-1}, *$ is higher for both electron-attracting and electrondonating substituents in the 4 -position than for weakly interacting groups. Another band occurs at $1511-1492 \mathrm{~cm} .^{-1}$, except for the compounds with electron-attracting substituents; the intensity is highest for the methoxy-compound. The position of the band

[^0]
at $1460-1430 \mathrm{~cm} .^{-1}$ is lowered as the electron-accepting ability of the substituent increases; the intensity is $(75-210)[(140 \pm 50)] . * \quad$ The significance of these intensity variations has been discussed. ${ }^{1}$

The $\mathrm{B}-\mathrm{N}$ stretching frequency (col. 5) occurs at $1095-1074 \mathrm{~cm} .^{-1}(200-310)[(260 \pm$ $35)]$; its position is lowered as the electron-attracting power of the 4 -substituent increases; this is as expected since the $\mathrm{B}-\mathrm{N}$ bond will be weaker in these compounds. A band at $1054-1038 \mathrm{~cm} .^{-1}(15-85)$ (col. 6) is assigned to a CH in-plane bending mode analogous to that at $c a .1018 \mathrm{~cm} .^{-1}$ for para-disubstituted benzenes. The $\mathrm{B}-\mathrm{Cl}$ stretching frequency (cf. Table 3) occurs at $843-820 \mathrm{~cm}^{-1}$ ($60-190$) (col. 7).

The nuclear bands of 4 -ethoxycarbonylpyridine-boron tribromide (Table 4; No. 7) closely resemble those of the analogous trichloride, and, except for the $\mathrm{B}-\mathrm{N}$ band, are included in the above ranges and statistical treatment. Table 4 also gives the nuclear bands of two 3 -substituted pyridine-boron trichlorides.

Experimental.-The following were prepared as previously described. ${ }^{7}$ 4-Ethylpyridine-, prisms (from ethanol), m. p. 109-1110 (Found: C, 37.4; H, 3.9; N, 6•1. $\quad \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NBCl}_{3}$ requires $\mathrm{C}, 37.5 ; \mathrm{H}, 4.0 ; \mathrm{N}, 6.2 \%$) and trimethylamine-boron trichloride (from ethanol), m. p. 237-240° (decomp.) [lit., ${ }^{8}$ m. p. 245° (corr.; decomp.)] (Found: C, $20.5 ; \mathrm{H}, 5 \cdot 3$. Calc. for $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NBCl}_{3}$ C, $20 \cdot 4 ; \mathrm{H}, 5 \cdot 2 \%)$.

Preparation of the other compounds has been described: ${ }^{3,7}$ they were recrystallised or redistilled before measurement. Measurements were as previously. ${ }^{1 b}$

I thank Dr. E. V. Ebbsworth for calling my attention to the work described in ref. 4, Professor H. J. Emeléus for making the report available to me, and Professor Bauer for permission to quote from it, Mr. E. W. Randall for conductivity measurements, and Drs. N. Sheppard and J. M. Lagowski for discussion. The work described in this and the two following papers was carried out in part during the tenure (by A. R. K.) of an I.C.I. Fellowship.

The Dysons Perrins Laboratory, Oxford.
The University Chemical Laboratory, Cambridge. [Received, November 17th, 1958.]
${ }^{7}$ Bax, Katritzky, and Sutton, J., 1958, 1254.
${ }^{8}$ Phillips, Hunter, and Sutton, $J ., 1945,146$.

[^0]: * Parentheses indicate values of ε_{A} and square brackets arithmetical means and standard deviations.
 ${ }^{1}$ Part V, $J ., 1958,4162$, and references therein.
 ${ }^{2}$ (a) Katritzky and Lagowski, J., 1958, 4155; (b) Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
 ${ }^{3}$ Bax, Katritzky, and Sutton, J., 1959, 1258.
 ${ }^{4}$ Peterson and Bauer, "The Infrared Spectra of Lewis Salts," Cornell University report, 1955.
 ${ }^{5}$ Taylor, J. Chem. Phys., 1957, 26, 1131.
 - Price, Frazer, Robinson, and Longuet-Higgins, Discuss. Faraday Soc., 1950, 9, 131.

